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INTRODUCTION

The present report, which is the third of a series of interim reports, deals
with the studies on "Parameter Optimization" carried out during the period,
March 1, 1964, to June 30, 1964, under the contract NAS8-5411. It isa
preliminary report and the results should not be considered final.

In the preceding report the effects of measurement errors of the observables
on the orbital parameters in general tracking operations were discussed and the
corresponding equations derived. Two groups of relationships were derived,
namely, those where the equations contain only observables and those of another
group where the orbital parameters were contained in the equations. The combin-
ations of quantities involved in these relationships are instructively displayed in
Tables 1 and 2 of Interim Report No. 2, pp. 11 and 12.

The error study is continued in this report and the results presented in Part [.
A table similar to that of the preceding report shows again the combinations of
quantities involved in the derived equations. The two sections of the table are
shown in Part 1V as Appendix. Part | contains the error study of the geometric
case where only distances and angles as observed quantities are involved. |n the
present study, the equations contain only orbital parameters. The equations are
considerably simplef than those containing only observables and they are better
accessible for the evaluation. Section B and C deal with the dynamic case. As
a supplement to the equations of Interim Report No. 2, the present relations
contain only and in a few cases primarily measured quantities. The equations
become more complicated but the relationships will have to be known for the
later optimization of tracking operations.

In Section D errors are being considered applying normalized distances as
one of the measured quantities. The distance is normalized with regard to the
major axis of the elliptic orbit which is proportional to the total energy content.
Since the normalization reduces the variable orbital parameters to one, namely
the eccentricity, the results become very instructive. The derivations lead to

relationships which clearly indicate regions and time periods along the orbit where
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the tracking errors will become small and where they will become excessive.

Part [ deals with an attempt to minimize the errors of the orbital parameters
caused by deviations of the observed quantities for the geometric case. The
observed quantities are three positions along the orbit. The minimization of the
error of the parameter p leads to conditions which are typical for a circular
orbit. This orbit then represents a minimum-error orbit under the assumed conditions.
Simultaneously with this analytic optimization a tentative computer study was
begun as briefly described in Section B of Part Il.

Heretofore the study was dealing with observables related to a geocentric
coordinate system. Since the practical tracking operations will involve measurements
to and from stations on the surface of the earth, coordinate transformations have
to be taken into account. These coordinate transformations will on one hand
directly offect the error relationships and the parameter errors, on the other hand,
errors of the position of the ground stations will cause additional errors of the orbit
determination. A review of the equations by which these transformations can be
carried out is presented in Part I1l. A station-centered system, a vehicle born
inertial, and a vehicle~born, orbit-aligned coordinate system are being discussed

ond the corresponding equations described in the three sections of this part.
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NOTATION SHEET

Eccentricity

Total energy

Angular momentum

Major axis

Orientation of major axis

Gravitational constant

~ Mass of earth

Mass of satellite

e

rzé = Areal velocity = KP

r/a normalized radial distance

Unit vectors

Rotation vector of earth
Inclination of orbital plane

Location of ascending node
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I. CONTINUATION OF ERROR ANALYSIS

The orbital parameters of a given satellite orbit may be determined by
making a number of measurements of the position, velocity, velocity components,
etc., of the orbiting vehicle. In Report No. 1 the equations for determining an
orbit from a minimum number of such measurements were given. [nstrumental
errors cause all the measurements to be uncertain to some extent. In the work
of Report No. 2 some of the effects of Instrumental errors on the uncertainty of
the orbital parameters were investigated. It should be pointed out that the error
analysis may be taken from two approaches. (1) The equations of the errors of
the orbital parameters due to deviations of the measured quantities may be derived
from the general equations of the coordinates in terms of the orbital parameters,
as in No. 2 part Il B~ C. (2) The equations for the errors of the orbital parameters
due to deviations of the measured quantities may be derived from the equations
for the parameter in question in terms of the measured quantities only. The equations
contain only the results of measurements, as in No. 2 part Il A.

The first method (1) gives equations which are simpler in form than those of
the second method, but tha results are not as readily applicable to the error
introduced by a particular set of measurements, where errors can occur in several
variables concurrently. Thus, for completenass, thz following includes the error
analysis for position measuremants from the equations of the orbital parameters, and
the analysis for the dynamic cases with only measured quantities or observables as
variables. This completes the error analysis of th= cases considered.

In Section C, normalization is applied for simplifying the error equations
based on position measurements. In the dynamic case, based on position and

velocity measurements, no similar simplification can be readily obtained.
A. Error Analysis for Position Measurements From the Orbit Equation

The equation for the orbit has been written in the form:

_ P
r= ]+ecos(e-€5
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where P =a(l - e2) = L2/C5MeM$2

2

=C2/K and C = ¢ é; K=GMe .

Consider now an error Ar in r. Writing the polar equation in the form

C2.—_ Kr (1+ecos @)

we get 2C§$—- = K(l+ecos @) + Kcos 8 B?(:_
where 3C . 2C
_] = 2!’9 = —
or r
2 2
Thus Kcos € ge = AC . ¢ = 3KP
r r r r
and 8¢ 3 3a(l-e?) -
or ~ rcos & ~ rcos € )

For the error in P we write

o . C
- K
opP 2C aC 4C2 4p
_ - - ]
and ar ~ K 9r ~ K T r (1)
or
aLrP = 4(1l +ecos €) . ()

For the error in a we use the equation

P = Q (]_e2)
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and get

apP 2, Qa de
a—;- = (] - € ) ar—- - 2aqe 5—;—
Therefore 2, 3a 4p 6ae P 2P (2 cos & + 3ae)
(]—e ) 5— = + =
r r r cos € rcos €
or da _ 2a(2cos €+ 3ae)

or rcos €

Finally, for the error in €, we write:

P =r [1+ecos(9—6°)]

Then
ap 96

3)

. o de
~— = l+ecos(€ -E\Q)+ersm(€I -eo)a—r-— +rcos (8 eo)r

or
96
3P 3P=ersin(6—6°) a_o

r

which gives

o 3p
ar ersin(e—eo) L1/e-1]

Now consider an error A 6 in the other variable €. We write the polar

equation in the form
2
a(l -e")=r(1+ecos B)

then
de

de .
-2aes— = r1Cos € =— - resin 6

a6 d6

(4)



or de re sin €
90 = rcos € +2ae : (%)

Similarly we have

T = "o e —g——gz ;"’;ifes"“ 4

RN,

er2 cos Bsin@

T fcos€+2ae - resin €
Thus
_81 _ 2 qer sin 8

a6 rcos @ + 2ae ) L (6)
Finally for the error in e we write
P = r[]+ecos(8-eo)]

ae

de P o
38 = rcos (€ —eo) 3 " sin (6 eo—) EX)

- aP de .
Substituting for ) and 55 gives

26 erzcos(e-e)sin(e-e)+2ce2r sin (6 - 0)
esin (B8 -¢€) ° = ° 2 2
' o/ 38 rcos(@—ﬂo) + 2 ae

26 rcos (@ -6 ) + 2ae
o o
36 = = 1 (7)
r cos (€ -Go) + 2aqe

From the equations above, one can determine the effect on the orbital
parameters, of a small deviation in either of the independent variables ror 6.
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B. Error Analysis for the Dynamic Case With Observables as Parameters

(1) Determinations from Radial Velocity Measurements.
From the results of part |1 of Report No. 1, we have the following expressions

for the orbital parameters in terms of two radial velocity measurements at two

positions on the orbit. _ -
26M_(——-—1) 4 i2.:2
2 e ' r r 2 1
N 1 2
MM G MG IR
2 2
— r] r2 —
r,r r2 r 2
1 12 12 .2 . 2
= MG 2oM, ) H (g ) Fy - f )
e 172 FA=r (8)
2
GM Ms 2 L2 GM M
E= - = ]/2 M (l: + ) =
2 s 1 M2r2 M
s
2 2
2 "1 o 2 .2\ OMM
= ; g - 9
1/2 Ms 1t ZGMe(r +r)+ 2 2 (r2 r]) r @)
172 ro-r 1
2
2 1
e= |1+ 2EL
MZS M2e G? (10)

60 can be determined from one of the two equations

6 =8 —cos-] [——‘—(—E—-l)] (1)
o 1 e m
6, - e L2- MM G
or -j| ¥ 08U T eos by 2 "sVe 12
8, = tan SnB. <~ Tesinb ' | T ( 2 2 ) (12
1 2 1 L -r2Ms MeG
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For the error analysis we need the partial derivatives

dp de aeo d de aeo aeo

ar] ar] E)rl ar] ! 81’]’ ar'] aT)

Starting with the parameter P we have

2
P = —
MM G
S e
thus
ap 1 aL2
M MM or,
S e
] I r, r
= 2 Mi ZMGrfr- ]22+
MsMeG 2 1 (r2+r])
2 3 3
N Nl B
T2 T 22 2.2
27N 27N
2 4
2 r.r
] M2 L2 172
Mo MC 57—+ (iy-iy) 59— ). (13
e I'2+l'.l (r2—l'.|)

For later use we note that

2
2 r r,r
a2 M Jomgl—2 ). [:2-:2) L2 . (14)
- Ll 2 "] T3 22
ar] MeG ) +Ty (r,” -




-10-

For an error in r we need

9 2 2
ap 1 oL” -2 . [N
ar ! AAZ M G Br] AAe(S 1 r2 _ r2 (15)
s e 2 1
For later use we note that
2 2% e 2,2
aL™ 1 1 2 (16)
ar, 2 2 2

1 Ms MeG fh =Ty

We consider next the eccentricity e which is defined by

o - - 2EL3
MZM 2G2
s e
Noting also that
2 GM M
s M™ r f
s
we get
2% de 2E 3L2 2L2 oE
ar] M2 M2G2 ar] M2M2 G2 ar]
s e s e
2 s o2, 12 ) MM e
M2M 262 2 1 M2r2 M ar]
s e s
L2 {1 8?2 a2 R
mMim2c?| M\ 2 9 3 . 2
s e 1 ] 1




2 joafk o 2?2 M e a2 ) MR a2 L
M2K7- m |2 3 2 V2N B KIS
3 s 1 1 s 1
2
where P is given by equation (14) . For the error in e from an error in ¥
1
we need Oe Thus
ar]
o le 2 0wy L] a2 2
ar] MZMZGZ 2 1 M2r2 Br]
5 e s 1
Ms 2 L2 GMeMs 8L2
Hr (=3 p) - — 37
Ms " 1 i
.2
2 o2 w2k el
=T\ RN 7 2 ot
M K M~ r i 1 (18)
3 s 1
8L2
where 37 is given by equation (16) .
]
Finally, for the third parameter, Go we use equation (12) and get:
GG 3 1 Y cos ez-cose]
or - = or fan
1 1 sin 9] - Ysin 92
) 1 cos e2 Y cos 62 - Ccos 9]2 o
- sin e] - Ysin 62 + (sin e] - Y sin 62) n

_ 2
Y cos 62 cos G;I
+ sin@; - ¥sin ej
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sin 9] cos 62 - sin 62 cos e] 9y
or

1+ 72 -27Y (sin 6] sin 62 + cos 8] cos 62) 1

This expression may be simplified by use of the trigonometric identities for the

sum and difference of two angles. Thus

960 _ sin 6, -6)) 2y
or 1y 7 - 27 cos (8, - 6,) ar)
From the expression for v ,
r L2- r M2M G
2 1s e
v == T2 2
1 L - o M™M G
s e
we get
2 2
a}'__r2 _L “MMG +r2 ]
2 2oomMime 1 P-oMZMmo
1 2s e 27s e
L2 2
al? 2 (Lt M MG ) 52
ar, Ms MeG N ) 2 2] or
1 1ML -r, MM G) 1
27s e
r 2 r 2
- T t o MIMG (1 - rp) 5
r L"-rM" MG ] 1
1 2's e
L2
where g is obtained from Equation (14) . Thus we have:
1
. _ 2
aeo ) sin (H] 92) r h
dr, 2 2 2 2

1 T+ 7y -27cos(6]-62) r] L -r2Ms MeG

(19)

(20)
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For erross in f we need

sin (8, - 0,)
O L o N A
' 1+ Y7+ 2 cos (8, -9 ) "
o
where
2 2
oy _ "2 | L oMMG g2
N Lz—rzMzM G 2-mime? o
s e 2 s e
‘ M2M G (r, -1.) 2
2 s Ve M1 aL
T 2 2 2 ar (23)
1 L - rzMs MeG) 1
|_2
and 3 is obtained from Equation (16) . Finally for errors in the angle ©
1
we need
860 ) a—mn ! Ycosez-cosel
6, ~ 96, sin@, - Ysin @,
] sin 9] (Y cos 92 - cos 9])
= 2 - cos 9]
Y cos 62 - cose sin 8] - Y sin 92 (sin 9] - Ysin 92)
smG - Ysin Gj
1 - Ycos(@,-86,)
3 ] 2 (24)

1 -2 Y cos (9] -82)+72
From the above analysis one can determine the effect on the orbital parameters of an

error in any one of the measured quantities in the detemination from radial velocity

measurements. We will defer until later the consideration of special cases.
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(2) Determination From Angular Velocity Measurement

Let us consider the results of part 3 of No. 1 where the orbital parameters

were determined from the measurement of the angular velocity of the orbiting

vehicle. (This quantity might be determined from position measurements at two

times, H and t, as mentioned in No. 2.)

Thus we have

2
2 4 -2
(r] 8]) r 6]

e

MG M G
e

1 Y cos 6, - cosB

60 = tan 2 ]
sin 6] - Ysin €

2

and P/r - 3 -2
] r] 9]
e = = sec (6]- 60)
cos (8] -6) MG
e
For the error analysis we need
aP aP aeo aeo aeo de de

ar] aé ar] ae . or 20

ae 1
Starting with the equation for P we have:
3 .2
ap 4N 8§
T MG
e
and -2

(25)

(26)

(27)

(28)

(29)




-15-

We note that the expression for eo is exactly the same as those considered
in Part A where radial velocities are measured at 6, and 6,. Thus we have already
calculated
36 a6

55 ond
1

o

5 (equations (21) and (24))

6
Thus we need only calculate —°  for the present case. This is trivial since
6

we see immediately

3 e
S - 0. (30)

36
Thus the effects of errors in 8 , 8, and r on the determination of 6, is complete.

Finally we find the errors in e from Equation (27) . Thus

2
de 3 r]2 8]
5— = ———— sec (9] -Go) (31)
1 MG
e
de 2 r13 e
— = sec (6' - Bo) (32)
20 M G
e
and .
r 3 e 2 sin(®@ -6)
de [ ] 1 -1 o (33)
H_GT MeG cos 2 © - 80)

From these equations one may obtain the errors in the orbital parameters which
result from instrumental errors in the determination of the orbit by angular velocity

measurements.
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D. Errors Derived from Normalized Orbital Parameters

The geometrical orbit equation for 6, = 0, is

p
l+ecos €

g =

, (34)

where

p =a(l—e2)

In the following, we are going to nomalize all our quantities by the

major-axis "a" . Later it will be shown that this approach gives a considerable

simplification.

Dividing Eq. (34) by a, we find

,
}

Ke}
o

1-e

= T¥ecos B (35)

Introducing a new parameter § , which is the normalized parameter,

such that
g = L
T a

yields

(l+ecose)§ =]—e2 . (36)

Taking the partial derivative of Eq. (36) with respect to ¥ gives

l+ecos@ + 'gcoseg—e = -2e§—%—
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Thus
g; _ _-l-ecos @ ) 37)
E cosB +2e
From the normalized geometric orbit equation we have
9 (38)

de _ 1
1+ecos 6+ §cose-zg = = 3¢

g

Substituting Eq. (37) into Eq. (3§) we find

dp _ 2pe(i+ecos 8) (39)

85 (]-e2)(§cose +2e¢)

Similarly, the following results can be obtained for the error of the eccentricity

and parameter p from partial differentiation with respect to the angle @ .

de  eT sinb
96 cos 6 + 2e (40)
dp -2 620 T sin 6
36 = - 41)
g cos 6 + 2e
We can eliminate § from above equations by substituting
_ I - e2
§ " T+ecos @
This gives,
_1_ dp _ 2e (1 + e cos 6)2 (42)
pai l+2e2(cose-l)+2e(l—e2)(]+cos e) ,
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2
1 9p _ -2e"sin @
2e + cos 8 (1-e")

where only e and @ are contained in the equations. |t should be noted that

dinp dlnp
a—z- and 3 e

can be substituted for the left-hand sides respectively. Since p

nomalized with regard to "a" is a function of e only, this case can be included

in the error analysis of e, so that

de _ (1+ecos 8)2 (44)
9% 2e + cos € (l+ez)

de _ e(l-ez) sin @ (45)
o€ 2e+cos€'(1+e2)

Since we know
2
g _ 1 -e
° l+ecos@
2

e +§cosee+z-1 = 0 ,

.
- ¥ cos 9-;{ 32 c0526-4(§ -1)
2

where
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It is obvious that q should have a real value for a true orbit.
Therefore

22 c052 0

7 - 4+ 1> 0.

Further, for an elliptical orbit, we should have

0 < e <1
then N cos @
2
de de

From equations of and T we can eliminate e and in terms of g .

kR

This will give us

de (29 - T cos ) Tsinb (46)
98 2q
de 2+ (29 - g cos@)cosb

e - T “7)

where ]‘, gzcosze
- s+
Y

q:

From here we can see that in the region of 0 < 'S' < 1. This will guarantee

us an elliptical  orbit and finite errors everywhere ( q always real and

0 < e<1,). Byincreasing § then this nice situation no longer exists. An
elliptical orbit and finite value of errors will exist only within a certain region.

This shows it will depend on z .
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In the following, we show where the breaking points are.

It is known

e de
o g6 o0 a0
\5:059 - —+ 1 = 0
e = cos—],'.-l- z—’“}
(= g ¢ ¥

It is obvious that for ‘S' < 1 no infinite slope exists. The breaking points only
exist when §> 1.

The following three figures show graphically characteristic properties of
the preceding error relationships. These figures are based on normalization with
regard to the major axis "a" with § = r/a as one of the observed quantities. By
this normalization only the eccentricity remains as variable orbital parameter.
The figure shows the relationship among the normalized observed distance ¥ ,
the observed angle € , and its corresponding errors. In F igure 1 the relationship
between eccentricity and observed angle € is shown where § is a parameter.
From the figure we can see that af ¥ < 1.0 the eccentricity varies as a function
of @ smoothly. Under the condition % > 1, the curve becomes piecewise
discontinuous. For instance at § =1.2 where 32° <6< 148° "e" becomes
imaginary and no real solution exists. The dots at the ends of the curves indicate
in the figure the limits of the real solution. Figure 2 and Figure 3 show the errors
of the eccentricity as a function of the observed angle € using § as a parameter.
Similarly as in Figure 1 for § < 1, smooth continuous curves exist. For § > 1,
the curves become discontinuous and have the same invalid regions as in Figure 1.
This means that no elliptic orbit can be found at the positions indicated by the

parameters in these regions.



Eccentricity

1.0

o
NN
$ \ \
=

7= 1.2
4 1 f
g::l 4
o
| T =16
Figure 1 Values of e at which § = const. as a function of & (notice

at § = 1.2, 1.4, 1.6, we have a region which e is imaginary)
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Figure 2 - Val e i
alues of g ot which € = const. as a function of €.
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40 where | @ = “/2 wherel 6 = ﬂ/z
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-7.0
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I1. OPTIMIZATION OF INDIVIDUAL PARAMETERS

In the preceding work (part 2 No. 2 and 1,#1 ) the determining equations
for errors in the orbital parameters due to errors in certain variables have been
presented from essentially two approaches. The relationships are, in many cases,
quite complicated. |n any attempt to optimize a given set of orbital parameters,
one would like to know the behavior of the errors of the parameters as a function
of the determining variables. That is, when an error in a given parameter is
minimum, and when it is maximum under a given set of measurements. This analysis
may be accomplished by either of two methods. (1) The equation for an error
may be differentiated partially and set equal to zero, and thus determine under
what conditions an extremum of the given error exists. (2) The equations for all
the parameters may be programmed on a computer and the minimum errors determined
by varying the values of the independent variables over some range of values. Each
of these methods has its advantages and disadvantages. We describe below how both

techniques are being employed.
A. Minimization of Errors by Differentiation

The conditions have been determined under which errors occuring in the
orbital parameters are minimum as determined by three position measurments.
These results were obtained by differentiation of the equations for the various
errors and setting the expression equal to zero, thus detemining the conditions under
which an extremum exists. The results of this calculation are given below, and

details of the analysis for one parameter are shown.

Let us first examine the error of —a'(-)?P— from Report No. 2, Page |5
1

A€ A€ Ae

1y 2
a_ar—:—‘ - - r22 '_32 Sin A 623 [ Sin (_2_]2) Sin (_22-3—) Sin (. 23-—) ]/{5 ] (48)
where

BBy = 8y-8y, Ay = 85-8), RB3 =8 -0y



and

r, r | &
5 = -—]Tz 5“’\(92'9 )+ '2'2—:‘3' sin (93’92) + ‘22_]‘ sin (e]'es) .

Let

669

dp
. f(r] ’ l'2, l'3, ]I 3)

r]=

The necessary conditions for having an extreme value of %‘:— will be
1

9F _9f _ af _af _ af _af _
ar] 3r2 ar3 38] 862 393

Proceeding with these partial derivatives, we will obtain six equations such as

AB A@ AB
:f {-r2 r23 sin A623[sin(2]2) sin ( 2)5| ( 23])]}
N
258
{"sT'ar}=°- (49)
2 3
—— sin (8,-8,) + —— sin(8,-0,) = O (50)
A6 A0 AG
of 2 . . 12 23 ]
3r2 {-2r2:3 sin (A623)[sm( 7 ———) sin ( 5 ——) sin (————)
AB Al AB
2 2, . 12, . 23 31 a8
- { -1y ry sin (A623) [sin ( )sm( ) sin ( 2 ) ]} T

8 2
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AB Ja's) AB
={-r22r325inA623[sin( 2]2)sin(——2—23) sin(~—2—3])]} 2—2
r, 9
2
AB AB A8
-{-r22r32 sin A8, [ sin ( 2]2)sin(Ts)sin( 23])]}823 grsz =0
which gives
1 a8
— 5 - = 0
51
' ar2 (51)
r r (N
| I 3 . 3'1 .
T sin (92'91) + '—2-— snn(63-62) + —2-? Sln(e]‘es)
r r

3 . 1 .
—Tsm(63—62) - 5 sm(ez-e]) =0 .

Since

r] , r2 , r3 are not zero
then .

sm(el -93) = 0 (52)
Similarly, 9f _ g .98 _

al'3 I'3 al‘3

sin (62 'e]) = 0 (53)

For
of
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€, 6,-6 6,6
g%] = {-r22 r32 sin (93-92) [ cos ( )(— ) n ( 3 2) sin ( 3)
e, -6 6,-86 6,-06
. 2 1, . 3 "2 1 3, 1 1
+ sin ( )sm(——2 )cos(—z-)—z—]} —57
AB AO 9

+ -2r22 r32 sin A623 [ sin( 2]2,sm( 22 ) sin ( 5 )]}8 32]

= 0 (54)
1 ez—e] 93-92 9]-9 6,-6 6,-6

—2—[cos( 5 )sin(——z—-—) sin ( 5 3)--cos(2—3) sin(22 ])

6-9 6-9 9-9 6,~06
3 )]8+[-sm( )sm( 2)sin(

sin (

) [—r]r2 cos (62-6])

+ 131y cos (6]-93) 1 = 0. (55)

62-8 6 -9 ry 3 92-6
Tr]rzcos( > ) si (——-)sm(B e)+T cos (

l)+

e,-9 Fnf 6,-0 6,-6
sin(T3) sin (93—62) + % cos(—%———]) sin ( ]2 3) sin (6]—6

3)

M r2 6] 93 6,-6

- cos )sin ( 22 ]

y) ) sin (62-9])
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o F 6,-6 6,-6
23 1 V3 2 "1
- =7 cos(——2—) (———) (6 92)
T, T 6.-86 6,-0
31 1 V3, . 2 71, .
- 5 cos ( ) sin ( > ) sin (9] -63)
62-9 9]-6

+ry0 sin ( ) sin (—-2—3) cos (62- e])

92-9] 6, -6

. . i 3
= 137y sin ( ) sin ( 5 ) cos (6]-93) =0 . (56)
0,-6 6,-6 6,-0
—g%z: { +r22 r32 cos(63-62) sin ( 22 ])sin( :; 2)sin( ! 3)
6.,-6 6,-6 6,-0
—r22 r32 sin (63-62) cos(—27——]) -—2]—sin(32 2)sin( ]2 3)
8,~ 6 6,-96 6,-96
+r22 r32 sin (93 2) sin ( 22 ]) cos ( 32 2) -2]- sin ( 12 3)} 8—;—
+ 1 -Ty Ta sm(—f—)[sm(—i-—)sm ( )sm(—f—)]}
26 98
v i 0. (57)
5 2
6,-6 0,-6 6,-6
{ r22 r32 cos (93- 62) sin (iz-——]) sin(—3T—2) sin ( ]2 3)
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2 2
rn T 6,-06 6,-0 6,-6
223 sin (63-62) cos(—zz——l) sin ( 32 2) sin ( ]2 3)

2 2
ro T 8,-6 6,-6 6,-6
+ 223 sin (93—62) sin(—%——!) cos ( 32 ]) sin ( ]2 3)}

ryr fm T o
2

1 . 2 3 . 31
[ 7— sin (62-9]) + =5 sm(93-62) +—— sin (61-63) ]

rr T,
12 23
[+ 5 cos (92-9]) - —5 cos (63-62) = 0 (58)
3¢ €9, 8378, &8

5.65.:{-—;'22%2 cos(63-62)sin(22 ) sin ( 5 ) sin ( 5 )

6,-6 6, -6 8,-6
2 32 sin (83-62) sin(—2—2—])—;— cos(—§2——-—2) sin(-—lz—:-s)

6.,-6 6,-6 6,-6
+ r22 r32 sin(83—62) sin(——-2——1) sin ( 32 2)——; cos (lz—-—?)};]?
6,-9 0,-6 6,-9
+1{ -r22 r32 sin A623[ sin ( 22 ]) sin(32 2) sin ( ]2 3)]} :j gg3= 0
<] "9] 93-9 9]-93

{ - r22 r32 cos (93- 92) sin ( 22 ) sin (_2._—2) sin (_—f—)
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6,-9, 83~ 8, . 61-63
5 )COS(————2 ) sin (

)

2 2
fn T 8,6 6,-6 6,-6
22 3 sin (83- 92) sin (—-?2——-]) sin ( 32 2) cos (—]7——3)} 5

' 3N
+ [ 57— cos (63- 82) - —5— cos (8;-6,) l=0 (59)
From Eq. (52) and (53) we obtain
&, -8, = 0, or = (60)
Gl -85 = 0, or w (61)
6,-8; = 2 (62)

By the same token, from

also from (59) we see = -

From these results where

byl =1 ol =]




-31-

These are quite clear to us. It will give us a circular orbit. Therefore, we

conclude that the circular orbit will give us minimum error of (__8| ) from the
9 ar
1

measurements.

By the same token, we can demonstrate for other error quantities such as

dp =~ %
9] ar]

is quite straight forward. We are going to omit the performance here.

....... . It will give us the same conclusion since the method



-32-
B. Minimization Study By Numerical Evaluation

Due to the complexity of the preceding equations, the optimization of a
given parameter results in a very lengthy calculation, as can be seen by results
in Part A above. However, the behavior of the equations may easily be investi-
gated by numerical techniques. For this approach, the equations for the
determination of the orbital parameters by a particular set of measurements are
programmed for a computer. With such a program, the effects of instrumental
errors on the determination of the orbital parameter may easily be investigated by
varying the observed quantities over some range which corresponds to the size of
an observatorial error. This method has the added advantage of giving an exact
number for the percent error in the detemmination of any given parameter for o
given percentage error in the measured quantities. With this information, the
values of the measured quantities may be varied over the entire range of the
actual orbit and the conditions under which the error in a given parameter are
minimum may be ascertained.

The numerical technique is being employed for the error minimization for
both the position and dynamic variable methods of determining the parameters of
an orbit. Results obtained to date are only of a preliminary nature, the object
being chiefly that of checking the Fortran program on sample data. We will defer
until later a description of the numerical minimization program and its application

to the optimization of the orbital parameters.
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1. REVIEW OF COORDINATE TRANSFORMATIONS

A. Consideration of A Station-Centered Coordinate System

All of the dynamic error analysis thus far presented has been in terms of
variables and parameters in the earth centered coordinate system. However,
actual measurements are made by tracking stations, or in relation to stations on
the surface of the earth. Since the measurement of tracking error are known for
the tracking station on the surface of the earth, the results obtained heretofore
have to be modified, and the errors expressed in terms of the measurements in
the station-centered coordinate system. Further, the location of this station
with respect to the center of the earth is not exactly known. Thus, even if it
were possible to obtain exact measurements at the tracking station, errors would
be introduced in transforming to the dynamic, earth centered, coordinate system.

It is the purpose of this section to study the exact transformation procedure.
In a future section, the error effects will be studied.

Consider a terrestrial station-centered or local coordinate system located
on the surface of the earth at _ﬁo from the center of the earth. Let -R’o rotate
with angular velocity 5, let R’ denote a point expressed in the local coordinate
system, and let R denote the same point expressed in the fixed, earth centered,
coordinate system. Let the fixed system be defined by the unit triad, 2 1 'e\2 ,
’e\3 , and the local, rotating system by ’é’] , ’é’z , 'é’a . These definitions are
shown in Figure ( 4) .

-
Now, since RQ , ’é’i are fixed in magnitude, we have

dszXROldf =§¢xei (63)

R = R’ Q. (64)
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R = SHOR (64)
. =a.0) 2

where summation over repeated indices is used throughout.

The coordinates or the tracking station, are Ci (t) and Gii (t) represents

elements of the transformation matrix. We have

R = R +R = C.2 +R. 4. 65
o T I (63)

and find the geocentrical R expressed in terms of the local R,

R=C.® +Ra. % =(C. +R'a..) ® (66)
| | ooy |

It is well known that

- ->- A
A x B —eiikA]Bk e,

where
+ 1, ijk evenpermutationofl, 2, 3
eiik = - 1, ijk oddpermutationofl, 2, 3
0 otherwise
and X = A.@_,E: B,Q,

Thus we obtain, taking into account the rotation of the primed (station-centered)

coordinate system

= dR dR:
dR _ (o] dR’ _ ’ i N,
el P Sl = Q x Ro + Q xR+ v ei (67)



= BxkR+ L & (67)
dt i
= eiik Qi (Ck+ R’ a k) e.
dR’ N
Toa e % S

The subscript indicates the component in the station-centered system. We find,

in terms of the position in this system
e dR’
dR p ' A
ar _{-d"f_ %i ok & G+ R cpr)] & (68)

Since we are concerned with the earth's rotation, we make e, the north pole

and we write

Q = Q & (69)
QO = 7.29x 107 rad/sec
Thus R = ® 0 + ci)é‘i (70)
& | , R ]
aF c lji3k ®p o + Q) @+ = °piJ % )

In equations (70) and (71), aki and Ci depend on time. Let us determine

this time dependence.

Since dRo L
— = Q xR ’ (72)




or

we have

so that
dC

dt

dC
dt

dC
dt

Solving this system, we obtain

0
—
—
-
S
Il

C3(f) =

where C is a constant givenby C = (C

-36-

=
&

i

Ccos(Qt+ &)

Csin(Qt + 8)

C3 = constant

2, sz) /2

(73)

(74)

(75)

(76)
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Similarly,

a. | ) Ai cos (Qt + 83) ,

a 5 ) Ai sin ( Qt + Si) ’ (77)

a 4 tH = a, o = constant .

and the constants Ai are 2 2 1/2
A=l ra )

These results can be further simplified if we assume that at some time f the
. . A . . .
direction of the axes, Qi and e'i of the coordinate systems coincide. We

write with Si' for the Kronecker Delta.

o ) = B

and have in matrix notation

cos (w) sin (W) O
(aii) = -sin(w) sin(w) O (78)
0 0 ]

w = Q(t—ro)

which is clearly the transformation matrix for a rotation in the earth centered,

equatorial plane.
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B. Consideration of a Vehicle Born, Inertial Coordinate System

Consider next an inertial coordinate system located in the vehicle. Let
Eo denote a point on the surface of the earth, expressed in the earth centered
coordinate system, and let R denote the same point expressed in the vehicle
born coordinate system. Lef this point rotate with angular velocity Q. Let

R denote the vehicle location with respect to the center of the earth. Let the

earth centered system be defined by the unit triad, @] , @2 , @3 , and the
vehicle born system by ’e\’] , ’8’2 . /e\'3 . These definitions are shown in

Figure ( 5 ). Asin Section A, we have

d‘]—{’o —> —

'E“_— = Q XRO ’ (79)
and

R’ = R'. & ,

i

R =C. (%2 , 80

, = COE (80)

e = qQ /e\

However, since the primed coordinate system is inertial, the components of the

transformation matrix a.. are constant and we have
J

R =R -R =C & -r.%. . @1)
o P 0

—
We find for the geocentrical R expressed in terms of the vehicle measured R’,

R = (C.-R.a.) & . (82)
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Similarly, as in Section A

dR o, dR’ L
I @& T oa = QxR - e (83)
or in terms of the geocentrical coordinate system, and using G = Q ’e\3 ;
e - dR’
dR B _ p A
ar l_eisk QC - %i] & &4)

The Ck (t) have the same form as given in Section A. |f the directions or the

axes ’é’i , {e‘i coincide, then we have the further simplification

where Sii is the kronecker delta, and obtain

E=&Vﬁ)%, (85)

and

: _ p’ N
T SR (86)
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C. Consideration of A Vehicle Born, Orbit Aligned Coordinate System

The geometry of this system is the same as in Section ll. Here, however,
the primed coordinate system is taken to be the intrinsic or Frenét triad. In this

system, ’é'i is aligned with the tangent to the trajectory, %’2 is aligned with

the inward normal, and Q’s is perpendicular to 'é’] and 2’2 in the right hand

sense, i.e. A = 'e\:’1 x 3’2 . This is shown in Figure (6) . The results

3

are the same as in Section 11, i.e.

R = (C.-a,R.) & ‘ (87)

&R oc - .d_R_’P A (88)
a7 | %isk Tk & %ilS o

Here the transformation matrix Oii is a function of time. Let us determine this
dependence.

The geometry of the two body problem in three dimensions is shown in
Figure (7). The intersection of the orbital plane with the equatorial plane is
called the line of nodes. Q is the angle between the line of nodes and the
)

]

respect to the equatorial plane. e, is the angle between the perigee point and

axis in the equatorial plane. i is the inclination of the orbital plane with

the line of nodes in the orbital plane. The orbit is given by

p
l+ecos(B-0)
o

where 0 is measured in the direction of motion from the line of nodes in the

orbital plane.
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Now 2’3 is perpendicular to the orbital plane determined by Qand i.
Clearly from Figure (7)

%’3 = sin (i) sin ( Q) 3]- sin (i) cos (Q) e
2
+ cos (i) 33 (89)
and consequently, with cii = g" . 'e\l
asy = sin (i) sin (Q)
(90)
agy = = sin (i) cos (Q)
Ay = cos (i)

In the orbital plane consider a polar coordinate system, €

, € as shown
r e
in Figure (&), we have

R =R

roo. en

The tangent vector @'] is given by

dr/
= _'d6 (92)
dR/ de \
Now
- de
R dR A

r 93
30 de R (%3)
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with
dR Pe sin (0 - 6o) R2e )
% o = T sin(e-e) , (94
(V+ecos (B -Bo))
and dle\r
A
3 = eq - (95)
Thus
dR R2e A
— H - n
5 - P sin (@ eo) e + R €y (96)
and
= YA 1/2
dR R% . 2 2
\-d‘e—|= (5 sin (8 -8) ) + R ]
i 522 |/2
= R l' R2e sinz(G -8) + ]] (97)
o
P
R2 2 /2
= [2(1+ecos(6—e))-(\-e)
l+ecos (6-0) °
o
R \—2_ ll'/z_ RPu_ R%U
p i R a P K C
Thus
’é':-—-sm(e-e)’é +£—@ (98)
] o r uR 0 )
We have the following decompositions for e and °q
[ (99)

%r = Lcos(B) cos ( Q) - sin (@) cos (i) sin(Q)] Q]
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+ [cos (6) sin (Q) + sin (8 ) cos (i) cos (Q)] 32 (99)

+-

sin (8) sin (i) QS

>

ey = —[sin (8) cos (Q) + cos (6) cos (i) sin( Q)] Ie\]

—

+ \’- sin (8 ) sin () + cos (8 ) cos (i) cos (Q)] g2 (100)

+ cos(€) sin(i) ’e\3

In these equations = @ (t) , which can be obtained from Keplers equation.

We then have for the a..

a;y = Eue sin (0 - eo) [cos (@) cos (©2) - sin (8 ) cos (i) sin (Q)]

- U*cé [sin (6) cos (Q) + cos (@) cos (i) sin(Q)]

ajy = gj sin (6 —60) [cos (8)sin () +sin (8) cos (i) cos (Q)] (101)

-

¥ Tff_{:_ L-sin(e)sin (Q) + cos (8 ) cos (i) cos (Q)]

a3 = CF:.Ue sin (6 - Go) sin (@) sin (i) + —l% cos (8 )sin (i)
e’2 may now be determined from the equation
'e\’2 = ’c\a's X %'] (i02)



or in transformation form

= da

44—

93 %2 "%29%3

11 93 " N3 93

= 931 927 92 Ny

(103)
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Geometry For Intrinsic On Frenet Satellite Fixed Tracking Station
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Perigee

N?

Figure 7
Orbit Geometry

Figure 8

Orbital Plane Coordinate System
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V. APPENDIX

The following two tables serve the same purpose as Tables | and 1l in
Report No. 2. They give a quick survey of the error analysis of the present
report. The tabulation is the same as in the previous report with the exception

sy . . . r
of an additional column which contains the normalized parameter €= T

in the geometric case.

In this display, Columns 3 through 14 plus Column 16 contain the variables
which are considered as measured quantities (observables) in the previous
analysis (Report #1 and #2). In Column A is the error in one of the orbital
parameters which is introduced by an error in one of the observables which error
appears in Column B. The errors in the orbital parameters are functions of the
measurement error (Column B) and of the other variables and parameters of the
orbital equations which are indicated by an x in the appropriate Columns 3

through 14 and Column 16.



ERROR ANALYSIS

(Geometric Case)

(continued, see also Report No. 2, p. 11)
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Observables Parameters
= > — — —
r] r2 r\ Vl V2
Al B 3 tp | 8] T3 1’] 9 r'2 92 a el 8, %= Eq. No| Remarks
Ae JAr{ x X x : 6 =0
o
Ae A? X X 9 - O
v 37 o
Ae Ae X X X 5 60 = O
p =0
x 40 o
AP Arix X X la 5] =0
L
X 2 eo =0
Ap |A G % x x 6 80 =0
A p AE x| x x 39 eo =0
AodATr I x X X 3 8 =0
O
X X %
Af‘qﬁr 4 BO A0
TABLE |




ERROR ANALYSIS
(Dynamic Case)
(continued, see also Report No. 2, p. 11)
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Observables Parameters
Al B ?} ’Fz 73 . V] 1 ‘7'2"_' Eq. No| Remarks
N A R B3 Y I R I Y ) B I
A p Ar] x | x x x 13
Ap AE] x x x 15
Ae /_\_r] x x X x x | x 17
Ae Afux X x x | x 18
AB JANL x | x | x | x X X o 21
AG [AF x| x | x| x * x | x 22
AGOAQ] x | x [x|]x x | x 24
AP Ar] X X 28
Ap Aé“x X 29
Ae Af] X X x X 31
aelae]x | x X 32
aelag ™ x *1 33
TABLE 2
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V. ERRATA SHEET

for the Report No. 2 of "Parameter Optimization "

Page 7, last equation Should read:
: A A : A A
e = e = =
2 2 2 2 2 2
ry (r]+Ar)] ra (r]+Ar])
Page 21, 8th line
- R2 _ R2
7 8% M3 Ay T A8 883 A8y
Page 22, last equation
de ac _ 2 2 aC
Kcea—v— V(]e) av KOEE——-QV(]-G)“CB—V
Page 23, second equation
Kav 25 - &V2(1-e%) - C KaeVav o2V (1-e?) - C
Page 24, second equation
2C = E-C—= K (1 + e cos 8)+ K cos e—?—e— ZC—8£= K (1+ecos8)+ Kr cos 8 ge
ar ar ar
Page 24, 7fh equation
2 2
dp _ 2e de _ 4C"_ 4p dp _ 2C 9oC _ 4C" _ 4p
or ~ K ar K r gr, ~ K 3ar K T r
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Should read

Page 25, 5fh equation

% _ - Je ;
3= 1+ e cos (B 60) +rear cos (e eo) 3.?..: 1+ e cos (e-eo)+ r..aa_re;cos (e-eo)

a6
)

. _ 900
+ ersin (8 90) TR

+ ersin (8 -60) T

2 a0 2 00
P e (6 -0 ) O _p ,3C (g -0 )0
= —— + — +ersin (e 90) P =t g t ersin (6 90) 37

Page 25, 6fh equation

2 26 2 GG
3p _3Ce_ _ . _ 3p _3C _ . _ o
TR T ersin(B-8) 5 T o Tersin(@-8) 5
Page 25, 7th equation
390 _ 3 P _C_ZE aeo 3 3 P _ C2
dr  ersin (8-80) r K dr ~ ersin (e-eo) r K
Page 27, 3rd equation
g—%—= rcos(e—e)-—-g—g- gLe=rCOS(9-GO)%%



